Phlair’s carbon sucking technology could lower direct air capture’s costs

Date:

Share post:


When it comes to climate change, there’s no such thing as a “get out of jail free” card. But there might be an inexpensive alternative: direct air capture.

The technology isn’t exactly an exoneration, but more like community service; it promises to suck massive amounts of carbon dioxide out of the atmosphere, atoning for our century-plus of transgressive burning of fossil fuels. Scientifically, it’s a sound idea. Commercially, it has been less so.

Currently, it costs about $600 to $1,000 to capture a metric ton of carbon, which is far more than anyone thinks is commercially viable. So myriad startups are racing to cut costs, aiming to capture one metric ton of carbon dioxide for $100 or less. 

Even at that price, it could be a difficult sell since burning fossil fuels remains, for the most part, free. But many investors and even a few multinational corporations like Microsoft, Shopify, and Stripe are betting that eventually, the world will embrace direct air capture, much like how we treat wastewater today instead of dumping it into a river.

Larger startups like Climeworks and Carbon Engineering are betting that scale will help rein costs in. Both companies use sorbents to draw out the carbon dioxide and use heat to release it from the sorbents so it can be stored elsewhere.

Smaller startups suggest that scale alone won’t be enough, though. “Thermal regeneration is always the expensive step, energy wise,” said Malte Feucht, co-founder and CEO of Phlair, a young direct air capture startup. He may have a point. One study says that capturing a meaningful amount of carbon, around 10 gigatons per year, using Carbon Engineering’s approach would require nearly three-quarters of all the electricity generated in the world today.

Feucht’s company thinks that a different approach that doesn’t rely on heat might help bring costs down. Like most direct air capture companies, Phlair uses fans to blow air over an absorber. But instead of heating the sorbent, it uses an acid to liberate the carbon dioxide. To produce the acid and base used in the process, Phlair, formerly known as Carbon Atlantis, developed a device it calls a hydrolyzer.

The hydrolyzer borrows heavily from the hydrogen industry, taking elements from both membrane-based electrolyzers and membrane-based fuel cells, Feucht said. (An electrolyzer makes hydrogen using electricity, whereas a fuel cell consumes hydrogen to produce it.) 

“Instead of hydrogen, we only produce acids and bases,” he said.

Phlair’s DAC machine employs what’s known as the “pH swing” method to capture carbon dioxide. Inside, the basic (high pH) solvent absorbs carbon dioxide as it flows through the air contractor. After the saturated solvent exits the contractor, it is dumped into a tank where it’s doused with acid (low pH). That swing in pH from high to low spurs a chemical reaction that releases the carbon dioxide so it can be piped elsewhere to be used or stored. The solvent then flows back into the hydrolyzer where it’s regenerated.

Phlair is deploying a pilot in the next few weeks, Feucht said, that can capture around 10 metric tons of carbon per year. After that, the startup is working on larger, 260-metric-ton plants that are scheduled to come online in late 2025. One being built with Paebble in the Netherlands will deliver carbon to help make a cement additive, while the other in Canada will be built with Deep Sky, a carbon removal project developer, which will store the carbon. 

The DAC startup has already sold a number of carbon credits to organizations like Frontier, which works with Alphabet, Meta, Shopify, Stripe, and others to create an advanced market commitment for direct air capture.

To help complete the larger projects, Phlair has raised a €12 million seed round along with a €2.5 million grant from the EU’s EIC Accelerator. Exantia Capital led the investment round with Atlantic Labs, Counteract, Planet A, UnternehmerTUM Funding for Innovators, and Verve Ventures participating.

“I think this is a sort of a unique time in history. Ten years ago, you would have probably needed to found an NGO to do what we’re doing,” Feucht said. “Now, there’s a real opportunity to serve customers, to build a functioning company, but then also to address that [carbon] problem. For me, that’s my personal, super big motivation.”



Source link

Lisa Holden
Lisa Holden
Lisa Holden is a news writer for LinkDaddy News. She writes health, sport, tech, and more. Some of her favorite topics include the latest trends in fitness and wellness, the best ways to use technology to improve your life, and the latest developments in medical research.

Recent posts

Related articles

Meta, X approved ads containing violent anti-Muslim, antisemitic hate speech ahead of German election, study finds

Social media giants Meta and X (formerly Twitter) approved ads targeting users in Germany with violent anti-Muslim...

Court filings show Meta staffers discussed using copyrighted content for AI training

For years, Meta employees have internally discussed using copyrighted works obtained through legally questionable means to train...

Brian Armstrong says Coinbase spent $50M fighting SEC lawsuit – and beat it

Coinbase on Friday said the SEC has agreed to drop the lawsuit against the company with prejudice,...

iOS 18.4 will bring Apple Intelligence-powered ‘Priority Notifications’

Apple on Friday released its first developer beta for iOS 18.4, which adds a new “Priority Notifications”...

Nvidia CEO Jensen Huang says market got it wrong about DeepSeek’s impact

Nvidia founder and CEO Jensen Huang said the market got it wrong when it comes to DeepSeek’s...

Report: OpenAI plans to shift compute needs from Microsoft to SoftBank

OpenAI is forecasting a major shift in the next five years around who it gets most of...

Norway’s 1X is building a humanoid robot for the home

Norwegian robotics firm 1X unveiled its latest home robot, Neo Gamma, on Friday. The humanoid system will...

Sakana walks back claims that its AI can dramatically speed up model training

This week, Sakana AI, an Nvidia-backed startup that’s raised hundreds of millions of dollars from VC firms,...